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Abstract

A quantum system with positions in Zp and momenta in Qp/Zp is studied.
Displacement operators in the phase space of this system and the corresponding
Heisenberg–Weyl group HW [Zp × (Qp/Zp)] are studied. It is shown that
such a system can be constructed from a semi-infinite chain of spins which are
coupled in a particular way.

PACS numbers: 03.65.Db, 02.10.De

1. Introduction

Finite quantum systems where the position and momentum take values in the ring Z(d) (the
integers modulo d) were studied originally by Weyl [1] and Schwinger [2] and later by many
authors (e.g., [3–7]). The mathematical work in [8, 9] is also related to this. We have reviewed
this work in [10].

We use a notation which shows clearly the G × G̃ position-momentum phase space,
where G is the additive Abelian group of positions and G̃ is the Pontyagin dual group of
momenta. In this notation we call these systems S[Z(d) × Z(d)]. We also call their d-
dimensional Hilbert space H[Z(d)× Z(d)] and the corresponding Heisenberg–Weyl group of
displacements HW [Z(d) × Z(d)].

When d is equal to a prime number p, these systems have stronger properties (e.g., there
are well-defined symplectic transformations, the number of mutually unbiased bases reaches
its maximum value d +1, etc). This is intimately related to the fact that for prime p the position
and momentum take values in the field Z(p), and the existence of inverses leads to stronger
properties.

A quantum system where the position and momentum take values in the Galois field
GF(p�) has also been studied. In our notation this is the S[GF(p�) × GF(p�)] system
and its Hilbert space H[GF(p�) × GF(p�)] is p�-dimensional. The Heisenberg–Weyl
HW [GF(p�) × GF(p�)] group of displacements, the symplectic Sp(2,GF(p�)) group and
Frobenius transformations in this system have been studied in [11, 12] (and reviewed in [13]).
Mutually unbiased bases in this system have been studied extensively in recent years (e.g.,
[14–17]).

In a different line of research, quantum mechanics and quantum field theory in the field
Qp of p-adic numbers [18] have been studied extensively in the literature [19–22]. In our
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notation this is the study of S[Qp × Qp] systems. The mathematical background for quantum
mechanics on locally compact fields (e.g., Fourier transforms and special functions on locally
compact fields) is dicussed in [23, 24]. Work on wavelets on locally compact fields is also
related [25, 27].

In this paper we consider a S[Zp × (Qp/Zp)] system where the position takes values
in the ring Zp of p-adic integers and consequently the momentum takes values in Qp/Zp.
Displacement operators in this system and their properties, and the corresponding Heisenberg–
Weyl group HW [Zp × (Qp/Zp)] are studied.

The literature on p-adic physics has studied both cases of complex wavefunctions (of
p-adic variables) and also p-adic valued wavefunctions (of p-adic variables). We use complex
wavefunctions of p-adic variables.

In this paper we consider the case of a fixed prime number p. If we consider all prime
numbers we naturally go into quantum mechanics on adeles [27].

From a physical point of view, most of the literature on p-adic physics assumes that
spacetime has a p-adic structure at the Planck scale. Here we are interested in a very different
physical application, namely the ‘quantum-engineering’ of a S[Zp × (Qp/Zp)] system from
a semi-infinite chain of p-dimensional quantum systems, e.g., spins with j = (p − 1)/2. We
show that if these spins are coupled in a certain way (which is described by a certain class
of Hamiltonians) then this system acquires a p-adic structure. This means that there is a
one-to-one linear map between the quantum states in the chain of spins and the quantum states
of a S[Zp × (Qp/Zp)] system, which is preserved as the two systems evolve in time. Such
‘quantum devices with p-adic structure’ might be useful for technology. From a theoretical
point of view, there is merit in understanding how a semi-infinite chain of spins gets p-
adic structure. Zp is a profinite group [28], i.e., a Hausdorff compact totally disconnected
topological group and it is interesting to see how the semi-infinite chain of spins acquires this
structure.

In section 2 we discuss aspects of p-adic numbers which are used later. In section 3
we consider a quantum system with positions in Zp and momenta in Qp/Zp. We study
displacement operators in the phase space of this system, the corresponding Heisenberg–Weyl
group HW [Zp × (Qp/Zp)], and coherent states.

In section 4 we start with a very brief review of S[Z(p) × Z(p)] quantum systems with
p-dimensional Hilbert space, in order to establish the notation. We note that some of the results
for finite quantum systems are valid only in the case of an odd dimension, and the case of
even dimension requires special consideration (e.g., [10]). For this reason, below p is an odd
prime number. We then introduce a family of states and operators which we call Prüfer states
and operators because they are related to the Prüfer (or quasi-cyclic) p-group. Using them, we
show in section 5 that a chain of �S[Z(p) × Z(p)] systems ( e.g., � spins with j = (p − 1)/2)
which are coupled in a certain way is ‘equivalent’ to a S[Zp × (Qp/Zp)] system. The term
‘equivalent’ means that there is a one-to-one linear map between the Hilbert spaces of the two
systems which is preserved as the two systems evolve in time. The coupling between the spins
introduces a hierarchy among them, which gives the system the p-adic structure.

We conclude in section 6 with a discussion of our results.

2. The field Qp of p-adic numbers

The field Qp is a locally compact field of characteristic zero. Topologically it is a totally
disconnected Hausdorff topological space. An element in Qp can be written as
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α =
∞∑

ν=ord(α)

ανp
ν; 0 � αν � p − 1. (1)

Addition and multiplication of two elements is the usual addition and multiplication for series
together with the ‘carrying’ of digits, so that 0 � αν � p − 1. The metric is non-Archimedian
and the absolute value of α is given by

|α| = p−ord(α). (2)

We use the notation Zp for the ring of integers in Qp (i.e.,|α| � 1). We also use the notation
pμZp for the set of all α such that |α| � p−μ and the notation β + pμZp for the set of all α + β

where |α| � p−μ.
Zp is an additive profinite group [28], and as such it is a Hausdorff compact totally

disconnected topological group. The

Zp ⊃ pZp ⊃ p2Zp ⊃ . . . (3)

is a fundamental system of neighbourhoods of 0.
An element p in Qp/Zp is a coset and we represent it with the element which has integer

part equal to zero:

p = p−kp
−k + p−k+1p

−k+1 + · · · + p−1p
−1; 0 � pi � p − 1; k = −ord(p). (4)

The product xp where x ∈ Zp and p ∈ Qp/Zp is also a coset in Qp/Zp, and we represent it
with the element which has integer part equal to zero, as

xp =
−1∑

ν=ord(p)

ανp
ν. (5)

Here the multiplication xp leads to a series
∑

ανp
ν where αν = ∑ν

μ=ord(p) pμxν−μ. Since
αν are not necessarily less than p we perform the ‘carrying’ operation and we get the series∑

ανp
ν which we truncate at ν = −1 to get the above result.

The Schwartz–Bruhat space of complex functions f (x) (where x ∈ Qp) which are locally
constant with degree n and have compact support with degree k, consists of functions for which
there exist integers k, n such that

f (x) = 0 for |x| > pk,
(6)

f (x + α) = f (x) for |α| � p−n.

2.1. Integrals over Zp

In integrals we use the Haar measure, normalized as∫
Zp

dx = 1. (7)

For practical calculations we mention the following formulae [24]:∫
pkZp

dx = p−k;
∫

|x|=pk

dx = pk − pk−1. (8)

The integral of a locally constant function of degree n is given by∫
Zp

f (x) dx = p−n
∑

f (x0 + x1p + · · · + xn−1p
n−1). (9)

Here we sum over all {x0, . . . , xn−1}. In the special case that f (x) = 1 for all x ∈ Zp,
equation (9) reduces to equation (7).
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2.2. Integrals over Qp/Zp

Let f (p) where p ∈ Qp/Zp be a complex function which has compact support with degree k.
The integral of this function over Qp/Zp is given by∫

Qp/Zp

f (p) dp =
∑

f (p−kp
−k + p−k+1p

−k+1 + · · · + p−1p
−1), (10)

where the summation is over all {p−k, p−k+1, . . . , p−1}. The counting measure is used on
Qp/Zp (see the appendix). In the special case that f (p) = 1 for all |p| = pk , and f (p) = 0
elsewhere, equation (10) reduces to equation (8).

More generally, let f (p) where p ∈ Qp/pnZp be a complex function which has compact
support with degree k. The integral of this function over Qp/pnZp is given by∫

Qp/pnZp

f (p) dp = p−n
∑

f (p−kp
−k + p−k+1p

−k+1 + · · · + pn−1p
n−1). (11)

2.3. Delta functions

Delta functions in the present context have been discussed in [24]. The δ(x − y) where
x, y ∈ Zp is such that if f (x) is a complex function with x ∈ Zp, then∫

Zp

f (x)δ(x − y) dx = f (y); x, y ∈ Zp, (12)

δ(x−y) is zero everywhere apart from the point x = y, where it is infinite. Delta functions are
not locally constant and therefore they do not belong to the Schwartz-Bruhat space of locally
costant functions with compact support. They are generalized functions which belong to a
rigged Hilbert space (constructed with a Gel’fand triplet). This is analogous to the harmonic
oscillator case and in the present context of p-adic numbers is discussed in [24].

The �(p − q) where p, q ∈ Qp/Zp is similar to a Kronecker delta:

�(p − q) = 1; if p = q,
(13)

�(p − q) = 0; if p �= q.

If f (p) is a complex function with p ∈ Qp/Zp, then equation (10) shows that∫
Qp/Zp

f (p)�(p − q) dp = f (q); p, q ∈ Qp/Zp. (14)

2.4. Additive characters

An additive character χ(α) of α = ∑
ανp

ν (where 0 � αν � p − 1) is given by

χ(α) = exp

⎛⎝i2π

−1∑
ν=ord(α)

ανp
ν

⎞⎠ ; ord(α) � −1

(15)
χ(α) = 1; ord(α) � 0.

It is a locally constant function of degree n = 0 and obeys the relation

χ(α)χ(β) = χ(α + β). (16)
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The additive character χ(αβ) of the product of α = ∑
ανp

ν and β = ∑
βμpμ is given

by

χ(αβ) = exp

(
i2π

∑
ν,μ

ανβμpν+μ

)
; ν + μ � −1; 0 � αν, βμ � p − 1. (17)

We can show that∫
Zp

χ(xp) dx = �(p);
∫

Qp/Zp

χ(xp) dp = δ(x), (18)

where x ∈ Zp and p ∈ Qp/Zp. In order to prove this we express the first integral as∫
Zp

χ(xp) dx = lim
�→∞

p−�
∑
{xν }

exp

(
i2π

∑
ν,κ

xνp−ν−κ

pκ

)

= lim
�→∞

p−�
∏
ν,κ

⎡⎣∑
{xν }

exp

(
i2π

xνp−ν−κ

pκ
,

)⎤⎦ , (19)

where 1 � k � � − 1 and 0 � xν, p−ν � p − 1. Then we use the relation

1

p

∑
xν∈Z(p)

exp

(
i2π

xνp−ν−1

p

)
= δ(p−ν−1, 0), (20)

where δ is Kronecker’s delta. This shows that the result is non-zero only if all p−ν−1 = 0,
i.e., p = 0. When p = 0,

∫
Zp

χ(xp) dx = ∫
Zp

dx = 1. In a similar way we prove the second
relation in equation (18).

2.5. The Prüfer p-group

The multiplicative cyclic group C(p�) is

C(p�) = {ω�(α�)|α� ∈ Z(p�)}, (21)

where

ω�(α�) = exp

(
i2πα�

p�

)
; α� ∈ Z(p�) (22)

are roots of unity. C(p�) is the Pontryagin dual of Z(p�) and is isomorphic to Z(p�), i.e.,
C(p�) ∼= Z(p�).

The Prüfer p-group (or quasi-cyclic group) C(p∞) contains all p� th roots of unity (for
all � ∈ Z+):

C(p∞) = {ω�(α�)|α� ∈ Z(p�), � ∈ Z+}. (23)

The Prüfer p-group is isomorphic to Qp/Zp (the multiplication in C(p∞) corresponds to
addition in Qp/Zp). The correspondence between the elements of the two groups is given by

Qp/Zp � α ↔ χ(α) = ων(p
να) ∈ C(p∞); ν = −ord(α) (24)

which we can also rewrite as

α = α−νp
−ν + · · · + α−1p

−1 ↔ χ(α) = ων(α−ν) . . . ω1(α−1). (25)
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3. Quantum systems with positions in Zp and momenta in Qp/Zp

We consider quantum systems with positions x ∈ Zp. The Pontryagin dual of Zp is Qp/Zp

and therefore the momentum p ∈ Qp/Zp. We denote as H[Zp × (Qp/Zp)] the Hilbert space
of this system. It comprises complex functions f (x) where x ∈ Zp, which are locally constant
and have compact support. The scalar product is given by

〈f |g〉 =
∫

Zp

[f (x)]∗g(x) dx. (26)

For convinience we normalize these functions to one(〈f |f 〉 = 1).
The Fourier transform of these functions is given by

f̃ (p) =
∫

Zp

dx χ(−xp)f (x); p ∈ Qp/Zp. (27)

The inverse Fourier transform is given by

f (x) =
∫

Qp/Zp

dp χ(xp)f̃ (p); x ∈ Zp. (28)

3.1. Position and momentum states

We consider an orthonormal basis |X; x〉 which we call position states:∫
Zp

dx|X; x〉〈X; x| = 1, 〈X; x|X; y〉 = δ(x − y). (29)

The X in the notation is not a variable, but it simply indicates position states. The wavefunctions
of the position states are delta functions and we have already mentioned that they do not belong
to the Hilbert space H[Zp × (Qp/Zp)]. They are rigorously introduced in the corresponding
rigged Hilbert space formalism, discussed in the context of p-adic numbers in [24]. The same
is true about the corresponding position operator introduced below.

Through Fourier transform we introduce another basis, the momentum states

|P; p〉 =
∫

Zp

dx χ(xp)|X; x〉. (30)

The P in the notation is not a variable, but it simply indicates momentum states. They also
form an orthonormal basis∫

Qp/Zp

dp|P; p〉〈P; p| = 1; 〈P; p|P; q〉 = �(p − q). (31)

An arbitrary state |f 〉 in H[Zp × (Qp/Zp)], normalized so that 〈f |f 〉 = 1, can be
expanded in these two bases as

|f 〉 =
∫

Zp

dx f (x)|X; x〉 =
∫

Qp/Zp

dp f̃ (p)|P ; p〉. (32)

We also introduce the following operators:

Un(a) =
∫

Zp

χ(axn)|X; x〉〈X; x| dx, Vn(b) =
∫

Qp/Zp

χ(bpn)|P; p〉〈P; p| dp. (33)

Formally these operators can be written as

Un(a) = χ(aX̂n), Vn(b) = χ(bP̂n), (34)

6
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where X̂, P̂ are the position and momentum operators

X̂ =
∫

Zp

x|X; x〉〈X; x| dx; P̂ =
∫

Qp/Zp

p|P; p〉〈P; p| dp. (35)

It has been pointed out by various authors that the multiplication xf (x) is not defined because
x is a p-adic number and f (x) is a complex function. The X̂, P̂ are meaningful only through
equations (33) and (34) which use characters of x times a complex function. It is clear
that the use of X̂, P̂ is limited. We introduce them for two reasons. The first is that below
we consider finite-dimensional subspaces of H[Zp × (Qp/Zp)] where the positions and
momentum operators are defined. The second reason is that we can use them as a guide in
order to introduce Hamiltonians H(̂X, P̂) analogous to those in a harmonic oscillator. One
example is

exp(iH1) = U2(a)V2(b) =
∫

Zp

∫
Zp

dx dy f (x, y)|X; x〉〈X; y|
(36)

f (x, y) = χ(ax2)

∫
Qp/Zp

dp χ(bp2 + xp − yp).

There is no simple relation between this and exp(iH2) = V2(b)U2(a) but they are both p-
adic analogues of the exponential of the harmonic oscillator Hamiltonian. Another example
is exp(iH3) = V2(b)U2(a1)U4(a2) which is the p-adic analogue of the exponential of the
Hamiltonian of the quartic oscillator.

3.2. The subspace H� of locally constant functions with degree �

If f (x) has compact support with degree k and is locally constant with degree n, then f̃ (p)

has compact support with degree n and is locally constant with degree k. To prove this we
assume that

f (x + α) = f (x) for |α| � p−n (37)

and rewrite this in terms of f̃ (p) as∫
Qp/Zp

dp χ(xp)f̃ (p)[1 − χ(αp)] = 0 for |α| � p−n. (38)

This shows that f̃ (p) = 0 for |α| � p−n and p > pn (so that χ(αp) �= 1). Therefore the
function f̃ (p) has compact support with degree n. In a similar way we prove that if f (x) has
compact support with degree k then f̃ (p) is locally constant with degree k.

We consider the p�-dimensional space H� which consists of functions f (x) where
x ∈ Zp/p�Zp

∼= Z(p�). These functions have compact support with degree 0 and are
locally constant with degree �. Their Fourier transforms f̃ (p) where p ∈ p−�Zp/Zp

∼= Z(p�)

have compact support with degree � and are locally constant with degree 0,

H� = {f (x)|x ∈ Zp/p�Zp
∼= Z(p�)}

= {f̃ (p)|p ∈ p−�Zp/Zp
∼= Z(p�)}. (39)

The space H� is a subspace of H[Zp × (Qp/Zp)] and H0 ⊂ H1 ⊂ . . ..
Let �� be the projection operator from H[Zp ×(Qp/Zp)] to H�. Position and momentum

operators acting on H� are given by

X̂� =
∫

Zp/p�Zp

x|X; x〉〈X; x| dx = ��X̂��

(40)
P̂� =

∫
p−�Zp/Zp

p|P; p〉〈P; p| dp = ��P̂��.

7
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Here the operators X̂� and P̂� are defined. They are p� × p� matrices with elements in
Zp/p�Zp

∼= Z(p�) and p−�Zp/Zp
∼= Z(p�). We note however that here also the use of the

position and momentum operators is limited, because in finite systems the Heisenberg–Weyl
group is discrete and the commutatator [̂X�, P̂�] is not useful [10, 13]. It is the exponential of
these operators (the analogues of equation (34)) that are useful).

We have already introduced Fourier transform in equations (27) and (28). For later use,
we also introduce the Fourier operator which acts on various states in H� to produce their
Fourier transforms:

F� = p�/2
∫

Zp/p�Zp

dx

∫
Zp/p�Zp

dy χ

(
xy

p�

)
|X; y〉〈X; x|

= p−�/2
∫

p−�Zp/Zp

dp

∫
p−�Zp/Zp

dp′ χ(pp′p�)|P ; p〉〈P ; p′|

= p�/2
∫

Zp/p�Zp

dx|P ;p−�x〉〈X; x|. (41)

It is easily seen that F4
� = 1� where 1� is the unity operator within H�.

We can prove that

F�X�F†
� = P�. (42)

3.3. The Heisenberg–Weyl group HW [Zp × (Qp/Zp)]

The displacement operators Z(a) and X(b) are defined as follows:

Z(a) =
∫

Zp

dx χ(ax)|X; x〉〈X; x| = χ(aX̂),

(43)
X(b) =

∫
Qp/Zp

dp χ(−bp)|P; p〉〈P; p| = χ(−bP̂).

More general displacement operators are defined as

D(a, b, c) = Z(a)X(b)χ
(
c − 1

2ab
) ; [D(a, b, c)]† = D(−a,−b,−c), (44)

where a, c ∈ Qp/Zp and b ∈ Zp.
Using equation (18) we prove that

Z(a)|P; p〉 = |P; p + a〉; X(b)|X; x〉 = |X; x + b〉. (45)

We use these relations to prove that

X(b)Z(a) = Z(a)X(b)χ(−ab) (46)

and more generally that

D(a, b, c)D(a′, b′, c′) = D[a + a′, b + b′, c + c′ + 2−1(ab′ − a′b)]. (47)

Therefore the D(a, b, c) form a representation of the Heisenberg–Weyl group, which we denote
as HW [Zp × (Qp/Zp)] .

We consider the following subgroups of HW [Zp × (Qp/Zp)]

G = {Z(a)|a ∈ Qp/Zp} ∼= Qp/Zp,
(48)

K = {X(b)|b ∈ Zp} ∼= Zp.

G is isomorphic to Qp/Zp and therefore it is discrete. K is isomorphic to Zp and therefore it
is a profinite group. We define its subgroups as

Kn = {X(b)|b ∈ pnZp} ∼= pnZp. (49)

8
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The

K ⊃ K1 ⊃ K2 ⊃ . . . (50)

is a fundamental system of neighbourhoods of 1.

3.4. Coherent states

Let 
 be a trace class operator acting on H[Zp × (Qp/Zp)]. We show that∫
Qp/Zp

da

∫
Zp

db D(a, b, 0)
[D(a, b, 0)]† = [tr 
]1. (51)

In order to prove this we consider the matrix elements of both sides with respect to 〈X; x1|
and |X; x2〉, and substitute the matrix elements

〈X; x1|D(a, b, 0)|X; x2〉 = χ
(

1
2ab + ax2

)
δ(x1 − x2 − b) (52)

and perform the integration.
Let |s〉 be an arbitrary (normalized) ‘fiducial’ vector in H[Zp × (Qp/Zp)]. We define

coherent states as

|a, b; s〉 ≡ D(a, b, 0)|s〉; b ∈ Zp; a ∈ (Qp/Zp). (53)

Then equation (51) with 
 = |s〉〈s| reduces to the resolution of the identity in terms of
coherent states:∫

Qp/Zp

da

∫
Zp

db|a, b; s〉〈a, b; s| = 1. (54)

Using coherent states we can represent a state |f 〉 in H[Zp × (Qp/Zp)] with the complex
function

fB(a, b; s) = 〈a, b; s|f 〉; b ∈ Zp; a ∈ (Qp/Zp). (55)

The index ‘B’ in the notation stands for Bargmann, because this is reminiscent of the Bargmann
representation in the harmonic oscillator formalism (although there is no analyticity here).
Then equation (54) shows that the scalar product of two states is given by

〈f |g〉 =
∫

Qp/Zp

da

∫
Zp

db[fB(a, b; s)]∗gB(a, b; s). (56)

Let σ(x; a, b) be the wavefunction of the coherent state

σ(x; a, b; s) = 〈x|a, b; s〉. (57)

The wavefunctions fB(a, b; s) and f (x) of a state |f 〉 are related to each other as follows:

fB(a, b; s) =
∫

Zp

dx[σ(x; a, b; s)]∗f (x),

(58)
f (x) =

∫
Qp/Zp

da

∫
Zp

db σ(x; a, b; s)fB(a, b; s).

A trace-class operator 
 acting on H[Zp × (Qp/Zp)] is represented with the function


B(a, b; a′, b′; s) = 〈a, b; s|
|a′, b′; s〉. (59)

It acts on a state |f 〉 as follows:


|f 〉 →
∫

Qp/Zp

da′
∫

Zp

db′ 
B(a, b; a′, b′; s)fB(a′, b′; s). (60)

9
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3.5. Example

We consider p-adic numbers with p = 3 and the state |s〉 with wavefunction s(x) = 〈x|s〉
(where x ∈ Zp) given by

s(x) = 1.51/2; if x ∈ pZp

s(x) = 0.61/2; if x ∈ 1 + pZp (61)

s(x) = 0.91/2; if x ∈ 2 + pZp.

This is a locally constant function with degree n = 1 and has compact support with degree
k = 0. It is normalized so that 〈s|s〉 = 1.

Its Fourier transform is

s̃(p) = 1.51/2
∫

pZp

dx χ(−xp) + 0.91/2
∫

1+pZp

dx χ(−xp) + 0.61/2
∫

2+pZp

dx χ(−xp). (62)

The corresponding coherent states |a, b; s〉 ≡ D(a, b, 0)|s〉 have the wavefunction

σ(x; a, b; s) = χ
(− 1

2ab + ax
)
s(x − b). (63)

3.6. A linear map from H[Qp × Qp] to H[Zp × (Qp/Zp)]

Most of the literature on quantum mechanics on p-adic numbers considers systems with
positions and momenta in Qp which in our notation we denote as S[Qp×Qp]. In this subsection
we introduce a linear map from the Hilbert space H[Qp × Qp] of the system S[Qp × Qp]
to the Hilbert space H[Zp × (Qp/Zp)]. These two Hilbert spaces are not isomorphic and
the map that we introduce is not bijective. However it establishes a relationship between
these two systems. From a practical point of view there is a lot of work on various special
functions in H[Qp × Qp] (e.g., in [24]) which through this map could be transferred into
H[Zp × (Qp/Zp)].

We can express the fact that p ∈ Qp/Zp as periodicity of the functions g̃(p) (see also the
appendix):

g̃(p) = g̃(p + 1). (64)

In this sense there is some analogy between the present work and quantum mechanics on a
circle. The map that we introduce in this subsection is similar to the Zak or Weil transform
[9, 29] which maps functions on the real line to functions on a circle (e.g., Gaussians to Theta
functions).

We denote with G(x) where x ∈ Qp the functions in the Hilbert space H[Qp × Qp] , and
with G̃(�) their Fourier transform

G̃(�) =
∫

Qp

dx χ(−xp)G(x); � ∈ Qp. (65)

We express � as

� =
∞∑

ν=ord(�)

�νp
ν = p + α

(66)

p =
−1∑

ν=ord(�)

�νp
ν; α =

∞∑
ν=0

�νp
ν

and define a linear map from H[Qp × Qp] to H[Zp × (Qp/Zp)] as follows:

G̃(�) = G̃(p + α) → g̃(p) =
∫

Zp

dα G̃(p + α). (67)

10
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This map is such that the function g̃(p) defined through equation (67) obeys equation (64).
We then prove that the inverse Fourier transform G(x) of G̃(�) is mapped into the inverse
Fourier transform g(x) of g̃(p):

G(x) =
∫

Qp

dx χ(x�)G̃(�) →
∫

Qp/Zp

dp

∫
Zp

dα χ(xp + xα)g̃(p)

=
∫

Qp/Zp

dp χ(xp)g̃(p) = g(x). (68)

The proof is based on the fact that χ(xα) = 1 for x, α ∈ Zp.

4. Quantum systems with positions and momenta in the ring Z(p)

We first discuss briefly some aspects of the theory of quantum systems with finite Hilbert
space (reviewed in [10]) in order to define various quantities which we use later.

We consider a S[Z(p) × Z(p)] quantum system where positions and momenta take
values in the field Z(p). The Hilbert space H[Z(p) × Z(p)] of this system is p-dimensional.
It comprises complex functions f (m) where m ∈ Z(p), with the scalar product

〈f |g〉 =
∑

m∈Z(p)

[f (m)]∗g(m). (69)

For convinience we normalize these functions to one (〈f |f 〉 = 1).
In this Hilbert space, we consider an orthonormal basis which we call position states and

denote as |X;m〉 where m ∈ Z(p). Here X is not a variable, but it simply indicates position
states in H[Z(p) × Z(p)]. The resolution of the identity in terms of them is∑

m∈Z(p)

|X;m〉〈X;m| = 1. (70)

The

ω(m) = exp

(
i2πm

p

)
; 1

p

∑
m

ω(mn) = δ(n, 0); m, n ∈ Z(p), (71)

where δ(n, 0) is the Kronecker delta are additive characters. Using them we define the Fourier
operator,

F = p−1/2
∑

m,n∈Z(p)

ω(mn)|X;m〉〈X; n|; F 4 = 1. (72)

Acting with the Fourier operator on the position states we get momentum states which
form another orthonormal basis

|P ;m〉 = F |X;m〉 = p−1/2
∑

n∈Z(p)

ω(mn)|X; n〉. (73)

Here P is not a variable but it simply indicates momentum states in H[Z(p) × Z(p)].
We also introduce the position and momentum operators

X̂ =
p−1∑
n=0

n|X; n〉〈X; n|; P̂ = FX̂F † =
p−1∑
n=0

n|P ; n〉〈P ; n|. (74)

In the summation we have specified that n takes values from 0 to p − 1 and this ensures that
these operators are single-valued. If we sum from kp up to (k + 1)p − 1 then we get these
operators plus k1.

11
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4.1. The Heisenberg–Weyl group HW [Z(p) × Z(p)]

The position-momentum phase space of this system is the toroidal lattice Z(p) × Z(p). In
this phase space we define the displacement operators

Z(α) =
∑

n∈Z(p)

ω(nα)|X; n〉〈X; n| = ω(αX̂),

(75)
X(β) = F †Z(β)F =

∑
n∈Z(p)

ω(−nβ)|P ; n〉〈P ; n| = ω(−βP̂ ),

where α, β ∈ Z(p). Acting with them on momentum and position states we get

Z(α)|P ;m〉 = |P ;m + α〉; X(β)|X;m〉 = |X;m + β〉. (76)

The displacement operators obey the relations

X(β)Z(α) = Z(α)X(β)ω(−αβ), α, β ∈ Z(p). (77)

General displacement operators are given by

D(α, β, γ ) = Z(α)X(β)ω(γ − 2−1αβ); α, β, γ ∈ Z(p), (78)

2−1 = (p + 1)/2 is the inverse of 2 within Z(p), where p is an odd prime number.
We can prove that

D(α, β, γ )D(α, β, γ ) = D[α + α′, β + β ′, γ + γ ′ + 2−1(αβ ′ − α′β)], (79)

and therefore the operators D(α, β, γ ) form a representation of the Heisenberg–Weyl group
HW [Z(p) × Z(p)].

4.2. Prüfer operators in the system S[Z(p) × Z(p)]

The Prüfer operators are generalizations of the displacement operators Z(α) and X(β). They
are unitary p × p matrices defined as

AP (p) =
p−1∑
m=0

χ(−pm)|P ;m〉〈P ;m| = χ(−pP̂ ); p ∈ Qp/Zp

(80)

AX(p) = FAP (p)F † =
p−1∑
m=0

χ(pm)|X;m〉〈X;m| = χ(pX̂).

In the summation we have specified that m takes values from 0 to p − 1 and this ensures that
these operators are single-valued. For example, if we sum from p up to 2p − 1 then we get
these operators times the phase factor χ(−pp). The sums in equations (80) can be viewed as
p-adic integrals on Zp/pZp

∼= Z(p). For example,

AP (p) = p

∫
Zp/pZp

dx χ(px)|P ; x〉〈P ; x|. (81)

It is easily seen that

AP (p)AP (p′) = AP (p + p′); AP (0) = 1. (82)

Therefore the operators AP (p) form a group AP which is isomorphic to Qp/Zp and also to
the Prüfer p-group:

AP ≡ {AP (p)|p ∈ Qp/Zp} ∼= Qp/Zp
∼= C(p∞). (83)

The same is true for the operators AX(p):

AX ≡ {AX(p)|p ∈ Qp/Zp} ∼= Qp/Zp
∼= C(p∞). (84)

12
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We next consider an element of Qp/Zp

p = p−kp
−k + p−k+1p

−k+1 + · · · + p−1p
−1; k = −ord(p); 0 � pi � p − 1 (85)

and use the notation

p = L(p) + p−1p
−1

(86)
L(p) = p−kp

−k + · · · + p−2p
−2.

If ord(p) = −1, then L(p) = 0. Inserting equation (86) into equation (80) we prove that

AP (p) = AP [L(p)]X[p−1],
(87)

AX(p) = AX[L(p)]Z[p−1].

Proposition 4.1.

(1)

p−1
∫

Qp/Zp

dp AP (p) = |P ; 0〉〈P ; 0|. (88)

(2) Let 
 be an operator acting on H[Z(p) × Z(p)]. Then∫
Qp/Zp

dp AP (p)
[AP (p)]† = [tr 
]1. (89)

Similar properties are also valid for AX(p).

Proof. Integration of equation (81) with respect to p, taking into account equation (18), proves
the first part of the proposition.

For the second part, we insert equation (81) into equation (89), and perform the integration
taking into account equation (18). �

Properties analogous to equations (88) and (89) are also true for the displacement operators
in general S[Z(d)×Z(d)] systems (see [10]). This reconfirms the role of the Prüfer operators
as generalized displacement operators.

The phase space of the S[Z(p) × Z(p)] system is the toroidal lattice Z(p) × Z(p). The
Prüfer operators introduce a finer grid into this lattice. We note however that there is no simple
relation between AP (p)AX(p′) and AX(p′)AP (p) analogous to equation (77), and therefore
this is a weaker formalism.

4.3. Prüfer states in the system S[Z(p) × Z(p)]

Let p ∈ Qp/Zp. The Prüfer states are defined as

|AX; p〉 ≡ AP (p)|X; 0〉 = p−1/2
p−1∑
m=0

χ(−pm)|P ;m〉 = AP [L(p)]|X; p−1〉
(90)

|AP ; p〉 ≡ AX(p)|P ; 0〉 = p−1/2
p−1∑
m=0

χ(pm)|X;m〉 = AX[L(p)]|P ; p−1〉,

where the AP ,AX in the notation of these states are not variables but they simply indicate
the two types of Prüfer states. In the case ord(p) = −1 the Prüfer states are position and
momentum states.

13
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Proposition 4.2.

(1) The Prüfer states obey the resolution of the identity∫
Qp/Zp

dp|AP ; p〉〈AP ; p| =
∫

Qp/Zp

dp|AX; p〉〈AX; p| = 1. (91)

(2)

|〈P ; p−1|AP ; p〉| = |〈X; p−1|AX; p〉| = sin[pπL(p)]

p sin[πL(p)]
. (92)

Proof. For the first part we use equation (89) with 
 = |X; 0〉〈X; 0| and 
 = |P ; 0〉〈P ; 0|.
For the second part we use the relation

N∑
k=−N

exp(ikθ) = sin
[
(2N + 1) θ

2

]
sin

[
θ
2

] (93)

with θ = 2πL(p) and 2N + 1 = p. �

For small πL(p) equation (92) shows that the Prüfer states are very close to the position
and momentum states. In this case the Prüfer operators are very close to the displacement
operators, and in equation (87), the operators AP [L(p)], AX[L(p)] are small corrections:

|AP ; p〉 ≈ |P ; p−1〉; |AX; p〉 ≈ |X; p−1〉
(94)

AP (p) ≈ X(p−1); AX(p) ≈ Z(p−1).

5. A S[Zp × (Qp/Zp)] system as semi-infinite chain of coupled S[Z(p) × Z(p)]

subsystems

In this section we discuss the ‘quantum-engineering’ of an S[Zp × (Qp/Zp)] system, from a
semi-infinite chain of S[Z(p) × Z(p)] systems (e.g., spins with j = (p − 1)/2), which are
coupled in a particular way. This special coupling will give p-adic structure to this semi-infinite
chain.

We consider a semi-infinite chain of S[Z(p) × Z(p)] systems with Hilbert space

Hchain = H[Z(p) × Z(p)] ⊗ H[Z(p) × Z(p)] ⊗ · · · (95)

and define a linear map R between the states in H[Zp × (Qp/Zp)] and the states in Hchain.
The position basis in H[Zp × (Qp/Zp)] is mapped to the position basis in Hchain, as follows:

|X; x〉 → |Xchain; x〉 = [p1/2|X; x0〉] ⊗ [p1/2|X; x1〉] ⊗ [p1/2|X; x2〉] ⊗ · · · .
(96)

x = x0 + x1p + x2p
2 + · · · .

The factors p1/2 on the right-hand side effectively introduce the Haar measure in scalar
products in Hchain. In order to see this explicitly, we consider the resolution of the identity in
terms of the position states in the two Hilbert spaces. The left-hand side of the resolution of
the identity in equation (29) can be written as∫

Zp

|X; x〉〈X; x| dx = lim
�→∞

p−�
∑

|X; x0 + x1p + . . . + x�−1p
�−1〉

×〈X; x0 + x1p + . . . + x�−1p
�−1|, (97)

where the summation is over all xk . If we replace the states in equation (97) with their
counterparts in the chain given in equation (96), the normalization factors p1/2 are needed in

14



J. Phys. A: Math. Theor. 41 (2008) 455303 A Vourdas

order to cancel p−� so that we get the identity 1. A different way of saying this is that the
states |X; x〉 are normalized to a delta function, while the states |X; xi〉 are normalized to 1.
The appearance of an infinite number of p1/2 factors on the right-hand side of equation (96) is
related to the fact that the position states belong to the corresponding rigged Hilbert space.

The Hilbert spaces H[Zp × (Qp/Zp)] and Hchain are isomorphic to each other. Below we
study explicitly the correspondence of various states and operators in H[Zp × (Qp/Zp)] with
their counterparts in Hchain.

Locally constant functions of degree � in H[Zp × (Qp/Zp)], correspond to functions
f (x0, x1, . . . , x�−1) in Hchain, i.e., to functions which do not depend on x�, x�+1, . . ..

5.1. Fourier operators

We substitute equation (96) into the Fourier operator F� of equation (41) which acts on the
subspace H�, and we get

F� → Fchain
� = p−�/2

∑
χ

⎛⎝∑
i,j

xiyjg
(�)
ij

⎞⎠ |X; x0〉〈X; y0| ⊗ · · · ⊗ |X; x�−1〉〈X; y�−1|,

(98)

where the summation is over all xi, yi such that 0 � xi, yi � p − 1. The ‘coupling matrix’(
g

(�)
ij

)
is a � × � symmetric matrix, given by

g
(�)
ij = pi+j−� if i + j � � − 1

(99)
g

(�)
ij = 0 if i + j > � − 1.

This matrix effectively rescales the (y0, y1, y2, . . .) on the right-hand side of equation (98),
which is an element of Z(p) × Z(p) × . . ., into (y0, py1, p

2y2, . . .) which is an element of
Zp. Similarly, it rescales the (x0, x1, x2, . . .) which is an element of Z(p) × Z(p) × . . ., into
(p−�x0, p

−�+1x1, p
−�+2x2, . . .) which is an element of Qp/Zp. Of course, we need to check

that these numbers have the p-adic addition and multiplication rule. We discuss this in detail
below, where we act with displacement operators (as implemented in the chain) on position
and momentum states.

Fchain
� is different from the Fourier operator F ⊗ F ⊗ · · · ⊗ F (where F has been given

in equation (72)) which performs independent Fourier transforms on each subsystem in the
chain. The latter Fourier transform can be written in the form of equation (98) with the matrix
g

(�)
ij replaced by the unit matrix 1�.

5.2. Displacement operators

Proposition 5.1. The linear map R implies the following correspondence between states and
operators in H[Zp × (Qp/Zp)], and their counterparts in Hchain:

(1)

X̂ → X̂chain = [
(pX̂) ⊗ (p1) ⊗ (p1) ⊗ · · ·] + p

[
(p1) ⊗ (pX̂) ⊗ (p1) ⊗ · · ·] + · · · .

(100)

(2) The momentum states in H[Zp × (Qp/Zp)] correspond to Prüfer states in Hchain

|P; p〉 → |Pchain; p〉 = |AP ; p〉 ⊗ |AP ;pp〉 ⊗ · · · ⊗ |AP ;pk−1p〉 ⊗ |P ; 0〉 ⊗ · · · , (101)
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where k = −ord(p). If πL(p) is small, then approximately

|Pchain; p〉 ≈ |P ; p−1〉 ⊗ |P ; p−2〉 ⊗ · · · ⊗ |P ; p−k〉 ⊗ |P ; 0〉 ⊗ · · · , (102)

where p = p−kp
−k + · · · + p−1p

−1.
(3) P̂ → P̂chain where approximately

P̂chain ≈ p−1[P̂ ⊗ 1 ⊗ 1 ⊗ · · ·] + p−2[1 ⊗ P̂ ⊗ 1 ⊗ · · ·] + · · · . (103)

(4) The displacement operator Z(a) corresponds to a product of Prüfer operators in Hchain:

Z(a) → Z(a)chain = AX(a) ⊗ AX(ap) ⊗ · · · ⊗ AX(apk−1) ⊗ 1 ⊗ · · · , (104)

where k = −ord(a). An approximate but simpler expression is

Z(a)chain ≈ Z(a−1) ⊗ Z(a−2) ⊗ · · · ⊗ Z(a−k) ⊗ 1 ⊗ · · · , (105)

where a = a−kp
−k + · · · + a−1p

−1.
(5) The displacement operator X(b) corresponds approximately to a product of Prüfer

operators in Hchain:

X(b) → X(b)chain ≈ AP (bp−1) ⊗ AP (bp−2) ⊗ · · · , (106)

where b = b0 + b1p + · · · and bp−i = b0p
−i + · · · + bi−1p

−1 ∈ Qp/Zp. A weaker but
simpler approximation is

X(b)chain ≈ X(b0) ⊗ X(b1) ⊗ · · · (107)

Proof. Substitution of equation (96) into equations (35) proves the first part of the proposition.
For k = −ord(p) and x = x0 + x1p + x2p

2 + · · · we easily see that

χ(xp) = χ(x0p)χ(x1pp) . . . χ(xk−1p
k−1p) (108)

and then using equation (90) we prove the second part of the proposition. The approximate
expression of equation (102) is proved using equation (94).

Using equation (102) in conjunction with equation (40) we prove the third part of the
proposition. The fourth part of the proposition is proved using equations (43) and (100).
Combining equation (103) with equation (43) we prove the fifth part of the proposition. �

There is no simple exact expression for the momentum operator P̂chain in terms of the
momentum operators in the subsystems; or for the displacement operator X(b)chain in terms
of the displacement operators in the subsystems. But we have given approximate expressions
for these quantities.

For Z(a)chain we have exact relations and easily show that

Z(a)chain|Pchain; p〉 = |Pchain; p + a〉; Z(a)chain|Xchain; x〉 = χ(ax)|Xchain; x〉. (109)

For X(b)chain we have approximate relations and will use equation (107) which is a weaker
approximation but easier to use. We show that

X(b)chain|Xchain; x〉 = |Xchain; c〉
(110)

x = x0 + x1p + · · · ; b = b0 + b1p + · · · ; c = c0 + c1p + · · · ,
where ci = xi + bi(mod p). The exact result should have c equal to the p-adic sum x + b. Here
c may not be equal to x + b because it does not have the ‘carrying’ of p-adic addition. This is
the error with the approximation in equation (107), for this relation.
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We also act with X(b)chain (of equation (107)) on momentum states, using not the exact
relation of equation (101) but the approximation of equation (102):

X(b)chain|Pchain; p〉 = exp(i2πθ)|Pchain; p〉
b = b0 + b1p + · · · ; p = p−kp

−k + p−k+1p
−k+1 + · · · + p−1p

−1 (111)

θ = b0p−1 + b1p−2 + b2p−3 + · · · .
The exact result should have a phase factor χ(bp) and this has extra terms in addition to those
appearing in θ . It is seen that here the combined approximation of equations (107) and (102)
fails to give all the terms in the p-adic multiplication.

The conclusion is that the exact operators like Z(a)chain produce results based on the p-adic
adddition and multiplication rule. Approximate expressions like X(b)chain of equation (107)
introduce errors.

5.3. Hamiltonian and coupling between the subsystems

A state |f 〉 in H[Zp × (Qp/Zp)] evolves in time as exp[itH (̂X, P̂)]|f 〉 where H(̂X, P̂) is the
Hamiltonian of the system. In our discussion below we use the space H� of locally constant
wavefunctions with degree �. There is no loss of generality in doing this, because all functions
in H[Zp × (Qp/Zp)] are locally constant. The advantage is that position and momentum
operators are well defined and we avoid the use of rigged Hilbert spaces. In this case it is
sufficient to use the Hamiltonian

��H (̂X, P̂)�� = H(̂X�, P̂�) = H
(̂
X�, F�X̂�F†

�

)
. (112)

The system Schain evolves in time in the same way as the S[Zp × (Qp/Zp)] if its Hamiltonian
is of the form

H
(̂
Xchain

� , P̂chain
�

) = H
(̂
Xchain

� , Fchain
� X̂chain

� Fchain†
�

)
. (113)

The Fourier transform Fchain
� of equation (98), which contains the coupling matrix g(�), enters

here. Physically, these Hamiltonians describe chains with a special coupling between their
components. This special coupling is related to the matrix g(�) which as we explained earlier,
rescales the positions (x0, x1, x2, . . .) in the chain into (x0, px1, p

2x2, . . .) which is a p-adic
integer. We discussed earlier how the p-adic addition and multiplication rules are implemented
in the chain.

The set of Hamiltonians in equation (113) is a subset of the more general Hamiltonians

H(X̂0, P̂0; X̂1, P̂1; , , , ) = H(X̂0, F X̂0F
†; X̂1, F X̂1F

†; . . .) (114)

which describes general Schain systems coupled in an arbitrary way. For clarity we used here
indices in the position and momentum operators, which indicate the subsystem within the
chain, on which they act.

5.4. Topological structure

In this subsection we discuss how the semi-infinite chain of spins acquires the totally
disconnected topology associated with the p-adic integers.

We consider the p-adic integer x0 + x1p + · · · (where 0 � xi � p − 1). We refer to xi

as coordinate with hierarchy i, in the sense that the ultrametric distance between two p-adic
integers with the same (x0, . . . , xi−1) and different xi is p−i (large i represents low hierarchy
in the sense that the ultrametric distance is very small).

In Schain the Hilbert space of the ith subsystem is spanned by the position states |X; xi〉
and for this reason we call it subsystem with hierarchy i. The hierarchy of the subsystems
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is created by the coupling matrix g(�) which as we explained earlier produces an i-dependent
rescaling of xi into xip

i .
Equation (102) shows that the momentum states in this subsystem are approximately

|P ; p−i−1〉. Therefore as we move towards the right of the chain, the hierarchy of
the subsystems decreases, the corresponding positions xip

i become very small and
the corresponding momenta p−i−1p

−i−1 become very large (in ultrametric). Position
displacements limited to low hierarchy subsystems

X(b) ≈ 1 ⊗ · · · ⊗ 1 ⊗ X(bi) ⊗ X(bi+1) ⊗ · · · b = bip
i + bi+1p

i+1 + · · · (115)

are close to 1 and this is related to the totally disconnected topology of the profinite group K
and the neighbourhoods in equation (49). In contrast, momentum displacements limited to
low hierarchy subsystems are large (see equation (105)) and this is related to discrete topology
of the group G.

6. Discussion

We have considered a S[Zp × (Qp/Zp)] system and studied displacement operators and
the corresponding Heisenberg–Weyl group HW [Zp × (Qp/Zp)]. We have also considered
coherent states in this context and used them to define a Bargmann-like representation.

Such a system can be engineered from a semi-infinite chain of j = (p − 1)/2 spins
which are coupled as described by the Hamiltonian of equation (113) and in particular by the
non-diagonal elements of the coupling matrix in equation (99) which is intimately connected
to p-adic theory. We have studied in detail the isomorphism between the Hilbert spaces
H[Zp × (Qp/Zp)] and Hchain. We have also discussed the mechanism which gives the chain
the totally disconnected topology associated with p-adic integers.

The work introduces ideas from number theory to quantum mechanics and harmonic
analysis.

Appendix

Let f (p) where p ∈ Qp/Zp be a complex function with compact support. We have explained
earlier that we can regard it as a function f (r) where r ∈ Qp, which is periodic:

f (r) = f (r + 1) (A.1)

r can be written as r = p + x where p ∈ Qp/Zp and x ∈ Zp. Strictly speaking p is here the
element of the coset with zero integral part; but we for simplicity we use the same notation
for the two.

Integration of f (r) over Qp can be written as∫
Qp

dr f (r) =
∫

Qp/Zp

dp

∫
Zp

dx f (p + x) =
∫

Qp/Zp

dp f (p)

∫
Zp

dx =
∫

Qp/Zp

dp f (p).

(A.2)

The counting measure on Qp/Zp ensures that the above relation holds (see also [25]).
Equation (A.2) can be regarded as a generalization of the Zak or Weil transform [29]

which takes functions from the real line R to the circle R/Z. In this case the subgroup Z is
discrete. In our case the subgroup Zp is totally disconnected.
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